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ABSTRACT
There is a growing need for social interaction in Virtual Reality (VR).
Current social VR applications enable human-agent or interpersonal
communication, usually by means of visual and audio cues. Touch,
which is also an essential method for affective communication,
has not received as much attention. To address this, we introduce
HexTouch, a forearm-mounted robot that performs touch behaviors
in sync with the behaviors of a companion agent, to complement
visual and auditory feedback in virtual reality. The robot consists of
four robotic tactors driven by servo motors, which render specific
tactile patterns to communicate primary emotions (fear, happiness,
disgust, anger, and sympathy). We demonstrate HexTouch through
a VR game with physical-virtual agent interactions that facilitate
the player-companion relationship and increase the immersion of
the VR experience. The player will receive affective haptic cues
while collaborating with the agent to complete the mission in the
game. The multisensory system for affective communication also
has the potential to enhance sociality in the virtual world.
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• Human-centered computing → Haptic devices; Virtual re-
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1 INTRODUCTION
With the rise of VR application, creating haptic feedback becomes
increasingly important to improve the immersion. Previous studies
have attempted to let users feel the shape, stiffness, texture, and even
the weight of the virtual objects [1, 4] to create the simultaneous
sensing of the objects being manipulated in VR scenes. However, to
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create an immersive experience that is similar to the real world, only
simulating physical properties is not enough. While the VR games
are criticized for being isolating because they shift the player’s
perception from the real world to the virtual world [7], there is a
greater needed to explore the sociality (association tendency) of
VR worlds.

One method to improve sociality is designing compelling com-
panion agents in VR games. Companion agent is a persistent non-
player character (NPC) that accompanies a player throughout the
game. It can introduce the game rules, showing the direction, and
providing notifications as a "sidekick", or perform as an “ally” that
fights alongside the player. Playing video games with an interac-
tive companion has great potential to increase game enjoyment
[3] and decrease the loneliness of game experiences [7]. To create
a compelling companion agent, emotion, awareness, and relation
to the player are crucial attributes [3]. For a companion agent in
an immersive VR game, a multisensory system for the affective
interactions has great potential to improve those attributes. In the
context of such modalities, we focus on touch. While touch is the
primary nonverbal means of communication in the natural world,
tactile feedback can be relevant and less distracting in environments
that already have rich visual and audio data, like in many VR game
scenes [6]. Improving the tactile feedback for VR games can greatly
increase the immersion and embeddedness [6] of a player.

Hereby, we explore affective tactile cues to complement visual
and auditory channels to enrich the companion agent interactions in
VR.While previous studies have explored vision and audio channels
for emotional expression in human-robot interaction [5], touch has
not received as much attention. The psychology study conducted
by Hertenstein et al. showed that distinct emotions can be com-
municated through specific tactile behaviors between individuals
[2]. Zhou et al.’s study [8] showed how one of the human touch
effectors may be replaceable with a robotic tactor interface as well.
The preliminary results indicate that humans can indeed decode
distinct emotions (fear, happiness, disgust, anger, and sympathy)
solely through robotic touch. Using this prior art, we create Hex-
Touch, a forearm-worn version of the tactor robot that can render
touch patterns in sync with the behavior of the companion agent.

2 SYSTEM DESIGN
HexTouch is a wearable haptic device that consists of four robotic
tactors driven by servo motors, controlled by an Arduino Nano (Fig.
1(d)). It is lightweight (340g) and is fabricated with skin-friendly
basswood (Fig. 1(a)). The base of the device fits the length from the
wrist to the middle part of the forearm (7 x 4.7 x 1.2 inches). It is
attached to the forearm using velcro tape (Fig. 1(a)). To communi-
cate the primary emotions, specific tactile patterns (Fig. 2) were
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programmed based on Zhou et al.’s study [8]. For each emotion,
the tactile behaviors were decided (Fig. 2) from the most frequently
used tactile behaviors for target emotion documented in Herten-
stein et al.‘s study [2]. For instance, humans were more likely to
use “squeezing and trembling” to express fear, “shaking and swing-
ing” for happiness, etc. HexTouch also provides haptic feedback
for other interactions in the game, such as notification, directional
cues by gentle tapping, squeezing to show making efforts (Fig. 2).
It also performs some social gestures like bracing (Fig. 2).

Our VR game is built for Oculus Quest, developed in Unity 3D.We
designed sound effects, facial expressions, and body movements for
the virtual agent’s affective interaction (Fig. 1(b)). For HexTouch’s
tactor motions, we use Oculus Link to transmit data of gameplay to
Unity3D, which communicates with Nano through serial (Fig. 1(c)).

Figure 1: System Overview (a) HexTouch, a wearable haptic
robot (b) The companion agent in the VR game (c) setting of
the demo (d) The internal view of HexTouch

Figure 2: Tactile patterns for each interaction

3 DEMONSTRATION
We developed a VR game with a companion agent to demonstrate
HexTouch. In the game, player will follow the guidance of the agent
and collaborate with it to complete the mission. Players can test the
HexTouch and experience the multisensory affective interaction
of the companion agent simply by putting on the Oculus Quest
and HexTouch device. HexTouch can be calibrated with a software
toolkit in order to fit different arm sizes. We held a preliminary user

test with four players. They remarked that the “tactile feedback
indeed made the agent more vivid and being-like,” and the “touch
patterns were easy to understand and matched well with the vi-
sual and audio feedback.” Another user mentioned that “the touch
sensation made them pay more attention to the agent’s feelings
and arouse their empathy.” We also found that the players were
more likely to touch the agent in the virtual world while receiving
the robotic touch. For instance, three of the players tried to pat the
agent when it showed fear because of seeing a virtual spider.

4 CONCLUSIONS AND FUTUREWORK
We propose HexTouch, a wearable haptic robot that renders affec-
tive touch clues through robotic tactors, including specific touch
patterns that communicate primary emotions. Using HexTouch,
we created a multisensory interaction system and used it for com-
panion agents in VR. For our future studies, we plan to evaluate
the complementary effect of the affective touch. We will recruit
participants to test our VR demo without HexTouch first and ask
them to interact with the companion agent again while wearing the
haptic device to see how can the robotic touch influence their per-
ception of the affective interaction. We hypothesize that the tactile
cues can make the companion agent more compelling. Such tactile
interactions can complement the visual and auditory feedback for
the interactions and enrich the emotional expression of an agent,
which also has the potential to enhance the sociality in VR.
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